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We analyze a method for the computation of the total energy of a metal, proposed by Harrison and based 
upon the following approximations: (a) the self-consistent potential, (b) a second-order perturbation ex
pansion, with a pseudopotential derived from the orthogonalized-plane-wave method. It is shown that the 
total energy can always be expressed as a sum of terms, each of them being a simple generalization of terms 
already known from more elementary calculations. The main effect of orthogonalizing the conduction elec
trons to the core is in increasing the ionic charge. These results are shown for two forms of the total energy. 
The first one is suitable for computations on the reciprocal lattice and contains a self-energy term, an Ewald's 
electrostatic term, and a second-order perturbation term; in the second one, a short-range pair interaction be
tween ions is exhibited, the form of which is explicitly given. 

I. INTRODUCTION 

TH E calculation of metallic properties has long 
been hindered by the problem of the choice of a 

suitable potential for the one-electron Hamiltonian. I t 
was believed that the effective potential acting on a 
conduction electron was small but one could not think 
of a potential being at the same time small and realistic. 

For simplicity we can start with the quasifree-
electron approximation in which the potential is purely 
phenomenological. I ts matrix elements are unknown, 
so that the formulas obtained cannot be easily com
pared with experiments. 

On the other hand, one can pick a more realistic (but 
no longer small) potential. The relationship between 
the shape of the potential and the numerical values 
obtained is then obscured by the complex numerical 
work which has to be performed. 

The introduction of the orthogonalized-plane-wave 
(OPW) method simplified the situation by giving a 
theoretical basis to the quasifree-electron scheme. I t 
also gave a practical means of getting a small potential 
out of a realistic (and large) potential. 

The two points of view seemed, then, to be reconciled 
when in a recent article, Harrison1 pointed out that 
approximating the non-Hermitian pseudopotential of 
the OPW method by a real potential could not be 
justified. A second-order perturbation expansion of the 
total energy leads in fact to terms which were not 
expected from the simplified theory. 

We intend to show in the present paper that the 
above-mentioned terms can be, in fact, rearranged in 
such a way that their physical origin appears more 
clearly. The total energy of the electron-plus-ion system 
is then expressed as a sum of three terms, each of them 
being a generalization of its quasifree-electron equiva
lent. One is a volume dependent term which is a kind 
of self-energy of the individual ions, the second a purely 
electrostatic energy term, and the third an interaction 
energy expressed as a second-order perturbation term. 

I t is also well known (see, for instance, Refs. 2 and 3) 
1 W. A. Harrison, Phys. Rev. 129, 2503 (1963). 
2 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). 
3 M. H. Cohen, J. Phys. Radium 23, 643 (1962). 

that with a real potential, a second-order perturbation 
expansion leads to an expression of the total energy as 
a sum of pair interactions between ions. Such a result 
is also true with a pseudopotential,1 and we shall derive 
here the explicit form of this pair-interaction function. 
We shall prove that in this respect the OPW method is 
also a generalization of simpler models and that the 
interaction is still a short-range one. 

In the first section of this paper we shall calculate 
the one-electron energy with a second-order perturba
tion expansion. The total energy of the system will be 
deduced in the second part, while the pair interaction 
function as well as a remark on the self-consistency of 
the method will be given in the third part. Though 
the calculations of the two first parts could be done 
with a large variety of pseudopotentials, we shall use 
from the beginning a special one which is nearly the 
same as Harrison's1 because it seems to be the most 
natural way to introduce in the last section the pair-
interaction function. 

Let us at last remark that the above-mentioned 
results have been obtained with the help of a perturba
tion expansion, the convergence of which will not be 
discussed here. 

II. CALCULATION OF THE ONE-ELECTRON 
ENERGIES 

We shall here calculate the eigenvalues of the one-
electron Hamiltonian with OPW and perturbation 
methods. 

Let 
H=T+V (2.1) 

be a Hamiltonian whose eigenfunctions are one-electron 
wave functions. T is the kinetic energy operator with 
eigenfunctions. |k) = e*k'r and eigenvalues E*. 

V is a self-consistent Hartree potential; that is to 
say, the real distribution of all the electrons of the 
metal has been taken into account in V. This potential 
is small far from the ions but cannot be thought of as a 
perturbation in their immediate vicinity. 

The spirit of the OPW method is to take advantage 
of the knowledge of a certain, incomplete, set of eigen-
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functions of Eq. (2.1) (the \c) functions with eigen
values Ec) so as to find more easily the remaining 
eigenfunctions |^ k ) (with eigenvalues 8k). 

One can express the orthogonality of | \pu) to any | c) 
function by writing that it has the form 

\4>J=(1-P)\<ri, (2.2) 

where P is the projection operator on the [ c) functions: 

J P = E o k X * | . (2.3) 

From Eqs. (2.1) and (2.2), we get 

{T+V~Zc(Ec~ Sk) \c)(c\} | <pk) 

^(T+V+Vk)\<pk)=8k\<pk). (2.4) 

The definition of | cpk) through Eq. (2.2) is not unique 
for we can add to | <pk) any function of the form Sc«c | c) 
without changing | \f/k). We shall use this indeterminacy 
to transform Eq. (2.3) into an eigenf unction problem 
with a small pseudopotential. 

Let us first divide V into two parts in the following 
way. Its first part Vi will be a sum of nonoverlapping 
potentials centered on every nucleus, 

»i(r— R) is chosen to be zero for | r— Rt-|)r0 where ro 
is smaller than the inscribed sphere in the atomic cell. 
I t includes all the important and rapidly varying part 
of V in this sphere, that is to say all the part of V which 
arises from the ion which stands at the center of the 
sphere. 

V2 is the remaining part of the potential, which we 
shall assume to be small everywhere. 

We shall now choose | pk) such that for any permis
sible variation of | <pk) 

&(<Pk\Vi+Vk\<pj=0. 

One easily gets 

Hi\ <Pk)^{T+(l-P)V1+V2} I ?k>= S k | *k>. (2.5) 

Actually the | c) functions are those of the core elec
trons localized in the vicinity of every nucleus. If u(r) 
has no amplitude near any nucleus, we have P\u)=0. 
Furthermore, any |^ k ) has a small amplitude in the 
same region, so that the functions c(r) form a nearly 
complete set of functions for functions localized near 
any nucleus. In other words, P acts more or less as a 
sum of square wells centered on every nucleus with a 
depth which is nearly 1 at the center and 0 outside. 

Equation (2.5) now defines a pseudopotential W 
= (1—P)Vi+V2 with the two following properties: 

(a) From the above, we see that W is small, for 
(1 — P) is small where V\ is important and vice versa, 
and V2 is always small. We can thus perform a per
turbation expansion with W. 

(b) W is not Hermitian. W contains the product of 
two Hermitian operators so that its adjoint W* is 

given by 

Wl=Vi+Vi(l-P). (2.6) 

With Eq. (2.5), the perturbation expansion4 is readily 
performed and one gets 

Sk=Ek+(k\W\k) 

< k | ^ | k + q ) < k + q | J F | k > 
+2wq^o—• (2.7) 

Ek—Ek+q 

and 
(k+q\W\k) 

| ^ k ) = ( l + 0k)|k} + X)q*o|k+q) ; 

Ek—Ek+(l 

l**>=(l- i>) |*> k>. (2.8) 
Formulas (2.7) and (2.8) are not the usual ones in 

two respects: 
(a) The numerator of (2.7) is not a squared modulus. 
(b) We want |^k) to be normalized to unity so that 

ak will not be zero. 
We shall first transform (2.7) by introducing the 

potential W^ which has to be a first-order quantity as 
well as W. Let us note that 
( k + q | ^ t | k ) - ( k + q | P F | k ) = < k + q | [ P , F 1 ] | k ) 

= ( k + q | C ^ ( ( F + r ) ~ ( r + F 2 ) ) ] | k ) . (2.9) 

As H=T-\-V and P = S c | c ) ( c | are commuting opera
tors, and |k) and | k + q ) are eigenfunctions of T, Eq. 
(2.9) gives 

(k+q\Wl\k)-(k+q\W\k) 

= - < k + q | P | k ) ( E k - £ k + q ) 

- < k + q | [ P , F 2 ] | k > . (2.10) 

We shall now suppose that V2 is very slowly varying 
in the region where P is not zero. If this is the case, V2 
can be replaced by a constant in [ ^ F Y ] so that the 
last term of (2.10) is zero. 

Equation (2.10) enables us to transform (2.7). 
Furthermore, it tells us that any matrix element of P 
has to be considered as a first-order term as well as 
those of W or W*. 

With Eqs. (2.7) and (2.10) one gets 

|<k+q | JF[k> | 2 

Ek—Ek+q 

~ i : ^ o ( k | P | k + q X k + q | ^ | k ) . (2.11) 

A further simplification will appear if one makes use 

4 Throughout this article we shall suppose that the system is 
enclosed in a box of volume U so that the eigenstates are discrete, 
and the perturbation expansion can be performed in the usual way. 
We shall adopt here the atomic unit system:-h—m = e= 1. For the 
Fourier transform we shall use the definition 

V(ti = l\/L*2Je+i*xV{x)dT9 

so that we have V (q) = ( k + q | V | k). 
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of the closure relation 

Z , | k + q X k + q | = l . (2.12) 
We get 

- Z U k | - P | k + q ) ( k + q | ^ | k ) = ( k | P | k ) ( k | T f | k ) 
- < k | P [ ( l - P ) 7 i + F , ] F | k > ; (2.13) 

because of the relation P2=P, the term P{\—P)V\ 
cancels out and we get 

S k = £ k + { l + < k | P | k ) } ( k | ^ | k ) - ( k | P F 2 | k > 

|<k+q|J7|k) |* 
+Z q^0~ 

E*-E 
(2.14) 

k+q 

Equation (2.14) is not the classical result of the per
turbation theory because of the — (k|PF2|k) and 
(k |P | k)(k| W\ k) terms. This is not important because 
we have to keep in mind that it is the total energy of 
the system and not <§k which has a physical meaning. 
Indeed we shall see in the next section that the presence 
of those terms is necessary in order to express the total 
energy in a simple manner. 

Let us now normalize |^k). From Eq. (2.8) we get 

| ^k )= | ^ ) ( l+a k -<k |P | k ) )+Eq^o |k+q) 

[<k+q|TT|k> 
X 

Ek-E. 
• ( l + a k ) ( k + q | P | k ) , (2.15a) 

k+q 

so that we must have a k = ( k | P | k). 
As |^k| is a first-order wave function and (k |P |k ) 

a first-order quantity, we shall neglect a k (k+q |P |k ) 
in the right-hand member so that | ̂ k) reads 

| f k ) = | k ) + E , ^ 0 | k + q ) 

f(k+q|TF|k) 1 
X\- —— - < k + q | P | k > . (2.15b) 

I -Ek — iSk+q ) 

The origin of the nonzero value of ak is the following. 
From Eq. (2.8) and from the definition of P, |\^k) has 
a very small amplitude near any nucleus. This means 
that the effect of orthogonalizing |î k) to the core func
tions leads to a repulsion of a charge #k from the 
vicinity of the nuclei. | <pk) has then to be renormalized 
so that | \pk) is a proper wave function. We shall see in 
the next section that this repulsion explains also the 
existence of the extra terms of (2.14). 

III. CALCULATION OF THE TOTAL ENERGY 

In this section, we shall express the total energy as 
a sum of three terms, each of which has a simple 
physical meaning. The first one will depend only on the 
number of conduction electrons and ions and not on the 
shape of the crystalline lattice; it will contain the energy 
of the free electrons plus a self-energy of the ions. The 
second one will represent the electrostatic energy of a 

metal idealized as a lattice of positive charges em
bedded in a uniform cloud of electrons, the density of 
which is such that the total charge will be equal to 
zero. The last one will be the difference between the 
actual energy and the first two terms and will 
appear as a second-order perturbation term in which a 
matrix element of the bare potential is multiplied on 
one side by a matrix element of the dressed potential. 

In order to obtain such a result, we shall explain 
first what is the physical origin of the various con
tributions to the total energy Etot, and what are the 
terms we take into account in the potential V. Keeping 
in mind the structure of the expression we are looking 
for, we shall first rearrange the electrostatic terms of 
Etot in order to eliminate some expressions which could 
not be obtained with the desired accuracy. To go one 
step further we shall need to explain what part of V 
enters into V\ and V2 and how we get the Hartree 
potential. The final formulas will then be obtained after 
some very simple calculations that we shall briefly 
summarize. 

A. The Total Energy 

The total energy Etot of the metal contains the fol
lowing terms 

£ to t=r^+Ejb<Jb ,S k - - - / p(x)U(x)dx -J> 
+-/pion(r)F i on(r)^r, (3.1) 

where 'U; is the ion self-energy. 
p(r) is the charge density at the point r of the con

duction electrons and U{x) is the corresponding po
tential given by 

AZ7(r)+4xp(r)-0. 

The minus sign in front of the corresponding term 
arises because the conduction electron interaction 
energy ^%fp(x)U(x)dx has been counted twice in the 
Hartree procedure. 

Pion(r) is the charge density of the ions, Vion(x) the 
related potential, and lfpion{*)Vi0n{x)dx the ion inter
action energy. We must not forget that the ion which 
stands at Ri does not interact with the potential it 
creates itself. To remind us of this fact and of the special 
meaning of the related integral, we shall write F ion for 
the potential instead of Fion. 

£k is the electron energy, given by (2.14). This 
energy has been expressed with the help of a potential 
V, the nature of which we shall now discuss. 

B. Form of V(r) 

Let us explain what terms are contained in V(x). 
First comes a term L involving all the non-Coulomb 
features of the potential. It can represent, for example, 
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FIG. 1. Summary of the different ways the potential has been 
separated in Sees. I I and III as well as the relationship between 
the different notations. 

the exchange interaction between the \c) and the |^) 
electrons. L is a sum of interactions localized around 
each ion. 

£ = £ R ^ ( r - R ) , (3.2) 

where I is a short-range potential. 
Then we have a Coulomb term VE corresponding to 

the potential due to the nuclei, the | c) electrons and a 
sum of plane waves £*<&*. I k)« The total charge PE 
which generated VE is then zero. As the \c) electrons 
are in the vicinity of the nuclei PE is well represented by 
point-charges, — Z localized on each crystalline site 
imbedded in a uniform charge + Z , where Z is the 
valence of the ions. 

The rest of V is a Coulomb potential Vs, which 
arises from the difference in charge density between the 
actual electrons and the plane waves. I t thus includes 
the effects of (a) the orthogonalization procedure of the 
OPW method and (b) the second-order perturbation 
method. 

Vs is thus a Hartree potential. I t is, of course, the 
most involved term of this theory, but it has already 
been shown by Harrison1 that such a term could be 
calculated without difficulty. 

I t has to be emphasized that VE and Vs are real 
potentials and not operators in contradistinction to L 
and P. Their Fourier transforms 

^ ( q ) = ( k + q | F ^ | k ) ; F*(q) = <k+q | ^ | k ) (3.3) 

are thus independent of k. 

C. Rearrangement of Terms 

I t is clear that some manipulation will now be neces
sary in order to obtain the above-mentioned form for 
the total energy. Indeed one can notice that the nota
tion is quite different in Sees. A and B above, and still 
not the same as in Sec. I I . This unhappy feature is due 
to the very nature of our problem, and our task is now 
to match together different parts of Etot or V. As this 
is not an easy matter, we think it useful to summarize 
in Fig. 1 how the different terms which enter V are 
grouped in the subsections of Sec. I I I . 

The first thing we need to do is make a transforma
tion of the electrostatic part of (3.1). Let po be the 
charge density due to the plane waves X^<fcjk), and 
VQ, the related potential. From the definition of Vs 
and VE we have 

U(r)= V0(r)+Vs(r), f*( r ) = F 0 ( r ) + F i on(r), (3.4a) 

p(r)=p 0 ( r )+/>s(r) , P^(r)=po(r)+p i 0n(r) . (3.4b) 

By making use of Eqs. (3.4) the last two terms of 
(3.1) may be written as 

2) 

1 
PB(r)Vis(r)di— / ps(r)Vs(r)dr 

2) 2j 

Po(r)[Fi ,(r)+Fs(r)]</r . (3.5) 

As po has only one Fourier component (for £=0) the 
three terms of (3.5) are 

(a) the self-energy of the charge PE, 

(b) —fps(t)Vs(t)di 

= - ( L V 2 ) E q P f i ( q ) ^ ( - q ) , (3.6) 

where ps(q) and Vs(q) are the Fourier transforms of 
ps(t) and Vs(r), and 

(c) - /"po(r)[7i,(r) + 7fl(r)]rfr 

= -T,k<kAk\VB+Vs\k). (3.7) 

This term cancels out Z^<fcjXk| Vs+Vs\k) which 
comes from the first-order perturbation term of Sk in 
(3.1). As we shall now see, this cancellation greatly 
simplifies the calculation of V s> 

D. Form of Vu V2> and Vs 

We have now to separate V into V\ and Vi> As we 
want Vi to include all that part of V which varies 
rapidly near the nucleus, Vi contains L plus the poten
tial VIE created inside the sphere of radius r0 by the 
part of PE which lies in it. Moreover, ro is chosen in 
such a way that this sphere is substantially bigger than 
the region of the space where | c) is not zero. 

Vi is thus formed of Vs plus V%E, the remaining 
part of VE. From the definition of r0 it is apparent that 
VIE is practically constant in the region where P 
effectively acts as it was supposed in the last section 
when asserting that [P, V{\ ~ 0. We shall now calculate 
Vs and prove that the same is true for it. 

Let us first remark that 

P*(r) = L*<*,(*k*(r)*k(r ) - l ) (3.8) 

does not contain any zero-order terms. (SeeEq. 2.15b.) 
We also point out that ps and Vs are now combined 
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in such a way in (3.1) and (3.6) that it is sufficient to cancel out (3.7) by another part of the total energy at 
know them to first order. [This was not the case in the this stage of the calculation.] 
primitive form of (3.1) and explains why we needed to From Eq. (2.15b) we get now ps(q) up to first order 

ps(q) ——Z)fc<AJ 
U 

r(k+q|TF|k) <k-q|FF|k>* 

L Ek-j Lk~-Ek+q E^ — Ek+q 

and with the help of the Poisson equation we obtain 

r < k + q | ( l - P ) 7 i + 7 2 * | k > <k—q| (l-P)V1+V2E\k) 

« k + q | P | k ) + < k | P | k - q » (3.9) 

^ (q)=E l fc<J 
-Ek-"-Sk+q + £ k ~ ^ k -k -q 

For large q the denominator is proportional to q2 while 
the numerator certainly goes to zero as 1/q2 and more 
likely as 1/q4. Thus by Fourier transform, for short 
distances Vs(*) is a constant, which proves that [P ,Fs] 
could be neglected in (2.10). 

One has still to show that we were consistent when 
writing in Sec. II that any matrix element of V2 was 
small. From (3.10) it is now apparent that (k+q| F2 | k) 
is small whenever F2#(q) is, and from the definition of 
V2E the latter is true for large g, but when q goes to 
zero F2jE(q) is proportional to 1/q2. (k+q |F 2 | k ) will 
nevertheless be small because if we put together the 
two V2E terms of F2, a q2 factor will appear which 
will remove the 1/q2 divergency. 

We can now obtain the total energy in the proposed 
form by splitting (3.1) as follows. 

E. Final Form of the Total Energy 

a. The Structure Independent Terms 

We can easily prove that the following terms do not 
depend on the relative positions of the ions, but only 
on the total volume of the system. 

£o=E.cHi+2:*<ib,{Sk+<k|Z|k>-<k|P7i|k> 
+<k|P |k)<k | ( l -P)F 1 | k>}. (3.11) 

Indeed the | c) functions for two different crystalline 
sites do not overlap, and Vi is, as L, a sum of nonover-
lapping potentials centered on the same sites. 

F i = E R ^ ( r - R ; ) . 

We thus obtain, for example, 

rg-ik(r-Rt) 

(3.12) 

<k|P7, !*>.]•{/-
\/L3 -c(r-RMi—R») 

/

gik(r'-Ri) 

^ ( r ' - R ^ r ' - R , ) ^(r '-R*) 

«k+q|P|k>+<k|P|k-q»]/ 

f - + ] } . (3.10) 
LEk — £k4-a -Ek — jEk_a-] ) 

q2Lz 

47T LEk — Ek+q Ek — J^k-q-

where the summation runs over all the sites Ri and all 
the |c) functions centered on this site. Such an ex
pression clearly depends only on the total volume Lz 

and certainly not on the relative positions of the ions, 
and so will be the case for (3.11). 

b. The Electrostatic Interaction Term 

The following terms will now be put together: 

77 M f>E(t)VE(j)dt 
(3.13) 

-£*<*#<(k I PVa I k ) - <k IPI k)<k I ViE | k» . 

We prove in Appendix A that 

Pi ( r ) ^ - E q e ~ ^ r I W 
<k|P[k+q> 

U 

may be interpreted as a sum of point charges localized 
on the ionic sites R; and that we can write 

-£*<*,{ <k|PF2*|k>-<k|P|k><k|F2jB|k)} 

= [Pi(T)V2E(t)dr=a[pE(r)VE(r)dr, (3.14) 
• / • 

with 

«=[{k |P |k)] a v=i: f c<^<k|P |k) /E*<^(k |k) . (3.15) 

The electrostatic term Em can then be written as 

E, »=i(l+2a)/*P*(r>fi,(r)<*r 

~i(l+a)2 /"pB(r)f£(r)^r. (3.16) 

Equation (3.16) has a simple physical meaning. From 
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(3.15) and (2.15a) a is the mean value of the total charge 
repelled by the ions in the course of orthogonalization 
of all the | \f/k) functions to the | c) functions. As far as 
electrostatic energy is concerned, we see that this fact 
appears in the presence of an additional charge of 
opposite sign — aZ localized on each ion counter-

Formula (3.18) is analogous to the perturbation term 
obtained with a small Hermitian potential. We have 
indeed the product of two matrix elements, one corre
sponding to the bare potential, and the second to the 
bare adjoint potential plus the screening term (that is 
to say, W itself). 

I t is now apparent that the total energy given by 
this second-order perturbation expansion can be re
garded as a generalization of the ordinary result ob
tained by using a small potential instead of a pseudo-
potential W. 

Indeed, the new terms which appear in (3.11), (3.16), 
or (3.18) are a consequence either of the repulsion of 
the conduction electrons by the core electrons or of the 
use of a non-Hermitian potential. 

We can thus conclude that in this respect, the OPW 
method gives a theoretical basis to the quasifree-
electron model. 

IV. GENERAL REMARKS AND CONCLUSION 

A. Self-Consistency of the Total 
Energy Expression 

We used a perturbation expansion of &k in order to 
obtain the total energy of the system. For a given q, 
it is clear that &k diverges when Ek = Ek+q; so it does 
not stand to reason that (3.2) is the correct value of 
the energy. 

One can nevertheless prove5 that. 
(a) for any given q, the summation on k<kp leads 

to a converging expression for the energy (3.18). The 
total energy is thus a sum of finite expressions. 

(b) (3.2) is the correct value of the energy up to 
the second order if (and only if) the P'ermi surface is 
not deformed by the first-order term of the perturba
tion expansion. 

balanced by the charge aZ uniformly spread on the 
whole crystal. 

c. The Second-Order Perturbation Term 

The terms which have not been taken into account 
are now the following: 

We have then to show that (k | W | k) is independent 
of the direction of k for | k | =kF. 

Indeed 

(k\W\k)=(k\VB+V8\k)+{k\L--PVi\k). (4.1) 

VE and Vs being Coulomb potentials, the first term 
is ^-independent. We shall now replace in P the index c 
by the double index (R*,0> where t specifies all the quan
tum numbers of the related wave function. t{x—R*) has 
the form Yim(6}<p)Pni(r— R,-). As L and V± are functions 
of (r—R) only, by expanding |k) in spherical Bessel 
functions, and summing on the index m, one readily 
proves that the last term of (4.1) is a function of |k | 
only. We have thus correctly calculated the total energy 
up to second-order terms in the last section. 

B. Pair Interactions and Range of Forces 

I t has already been noticed3,5 that a second-order 
perturbation expansion with a real potential leads for 
the total energy to an expression which can be in
terpreted as a sum of pair interactions. Harrison1 

derived the same result for his pseudopotential but 
did not write down the explicit form of the interaction 
function. 

We think it is worthwhile to give this formula here 
and to comment on its principal features. We shall first 
rewrite in our own notation the pair-interaction func
tion derived by Harrison from EPy and shall afterwards 
add the contribution of Es to get it in its final form. 

a. Form of the Ep Term 

Let us first notice that in Ev the term q = 0 is ex
cluded from the summation; for q^O, Fjs(q) is just the 

5 A. Blandin and R. Pick, Physique de la Matiere Condensed 
(to be published). 

D / <k+q \W k) 2 \ 
£ , = - E , P a ( q ) ^ s ( - q ) + S * < ^ ( E , H O - •+<k|P|k><k| F s | k > - < k | P F s | k > ) . (3.17) 

2 \ Ek — Ek+q / 

With the value of ps(q) (3.9) and F#(q) (3.10), it is readily found that Ep can also be written 

^k\V1(l-P) + V2E\k+q)(k+q\(l-P)V1+V2E+Vs\k) 

Ek~ Ek+q 

(k\V1(l-P) + V2E+Vs\k+q)(k+q\(l-P)V1+V2E\1k)} 

Ep—2 l^,k<kFZ^q^0<i 

Ek — Ek+q 
(3.18) 
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Fourier transform of the potential produced by the ionic that we can write 
charge density. With the help of this remark and of ^==Sq^o|<5(q) | 2 E(q) , Fs(q) = »S(q)fl,s(q), (4.2) 
formulas (3.10), (3.12), and (3.17), it is easily shown where 

S(q) = £ *<* - * " * , 

0s(q)= 
H(q)" 

jk<CkF 

Ek~ -Ek+q E k - £ k - q 

-Ei[<k+q| /></ |k)+<k| /><<|k-q> 

<k+q |^ | k> = E i < k + q | ^ | i ' i | k > , <k+q |o t | k> = E 4 <k+qhi | />< / |k> , 

q2D kFD ( q q2D f 1 1 V ^ * , £ « / g V 

#(q) = . E*<*4 + ) = g 
4TT \ E k - E k , a £ k - £ k _ a / 4TT 4TT2 \2JfeF/ k —E k + q £ k — £ k _ q / 4?r 4TT2 

1 —#2 l + # 
(a) = H log 

(4.3) 

<k |^ - t f+- (47rZe-^V2 2 L 3 ) | k^ 
£ (q ) = § L*<** • + c c , (4.4) 

E k —E k + q 

"<k+ q| I- o- {4arZe^x/q2U) | k) <k | / - o*- faZ^'/fL*) | k— q>" 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Ep can thus be expressed as 

£ p = £ i u . i y E q ^ ^ * ( R - R ^ ( q ) 

which defines ^ ( r ) by its Fourier transform. 
Though it shows up a pair interaction, (4.9) is not 

in itself so useful a formula as (4.2); one can see that 
E(q) diverges as 1/q2 when q goes to zero, and decreases 
very rapidly for q tending to infinity. As long as sum
mations are performed on the reciprocal lattice, (4.2) 
converges quickly because E(q) is already a small 
quantity for the smallest q compatible with 5 ( q ) ^ 0 . 
On the other hand, for large distances ^ ( r ) falls off as 
1/r so that the summation on the direct lattice cannot 
be done without much difficulty. This is unimportant 
in fact because all these difficulties will disappear when 
we add the pair interaction terms which come from Es. 

b. The Pair-Inter action Function 

I t m a y seem surprising to devote this whole subsec
t ion to the addi t ion to (4.2), of a t e rm which is readily 
seen to be 

2 ZJR»,R*^R*1 Z 

4TTZ \ 
\*> [-Z-2P(q)] e*-<**-*y> , 

(4.10) 
where 

P(q) = E*<*,{E«<k+q|<X*|k». (4.H) 

In fact this addition is not easy to perform if we wish 
to obtain a result that we can easily compare with 

those of simpler theories. We have to remove all the 
divergencies which come from the 1/q2 character of the 
Coulomb potential when q goes to zero. We already 
noticed in Sec. I l l D that such a removal could be done 
on V%. This will also be possible for the pair-interaction 
function. 

We first separate all the terms which contribute to 
(4.4) and (4.10). We then notice that every time there 
exists a diverging term, we can group it with one or 
two other ones such that the sum is no longer divergent. 
After this rearrangement is performed, the total ex
pression is easily brought into the following form: 

£**= £o+ fiint= £ o + i E R W ^ C R . - Ry), (4.12) 

where £0 is a self-energy of the ions and £F(R — Ry) is 
given by 

ff(R,-Ry) = i ; q ^ i q - ( R ^ R ' ) f i ( q ) 

= Z ^ o ^ - ( R * - R ' 26(q) 
(4.13) 

+ 
- Z - P ( q ) + ^ ( q ) + ^ * ( - q ) l 

H(q) 

with 

( k + q K - H k ) ! 2 

(k+q\t-o\k) 

(4.14) 

(4.15) 
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The following comments may be made on Eq. (4.13): 
(1) Three kinds of terms appear in £(q) : (a) the 

ionic charge — Z ; (b) the "additional charge due to the 
orthogonalization procedure": —P(q); (c) all the non-
Coulomb terms of the potential, which are in A (q) 
and #(q). 

One easily realizes that the existence of the (c) terms 
is not only related to the use of an OPW method but 
also to the presence of a non-Coulomb part L in the 
original potential V. Thus, even if we make the very 
crude approximation that the Hartree potential is 
small enough so that V by itself can be thought of as a 
perturbing potential, both terms which appear in (c) 
will still be present in S(q). 

(2) £(q) is continuous for £ = 0 . The term q^O need 
no longer be discarded in the summation (4.13). 

(3) The first derivatives of S(q) are also continuous 
for # = 0. Then for large distances, ^(r) no longer falls 
off as 1/r. The asymptotic form of / ( r ) is now related 
to the infinite derivative of H(q) [and presumably of 
A (q) and J (q) ] for | q| =2kF. If we assume that A (q) 
and &(q) are less singular than (or have the same singu
larity as) # ( q ) , then / ( r ) will have the asymptotic form 
C cos\ 2kFr\/rz, where C is a constant related to the 
behavior of €(q) for | q|~2&j!\ This result is a general
ization of what was obtained with the approximation 
mentioned in (l.a) when the term L is also neglected.6 

[This means : P ( q ) - ^ ( q ) = ^(q) = 0.] 
(4) In (4.13), a | P ( q ) | 2 / # ( q ) term has been added 

so that a more symmetrical formula appears. This is 
the same kind of approximation we made in adding an 
a2 term in (3.16). On the other hand, since ^(r) de
scribes a short-range interaction, the approximation of 
Pi ( r) by a sum of point charges (which was adequate as 
long as an important part of Sec. I l l came from the 
interaction of distant charges) may be too crude for 
small values of r. In other words, for such distances, we 
cannot approximate P(q) by aZ, as we implicitly did 
in comment (1). 

C. Conclusion 

We have now succeeded in proving the following 
statements. To third-order terms: 

(a) The OPW method does not bring any funda
mental modification to the quasifree-electron scheme. 

(b) Apart from a constant, the total energy of the 
metal may be written as a sum of two terms. 

The first term is of an electrostatic nature and repre
sents the self-energy of ions, whose charge has been 
increased by the OPW orthogonalization, embedded in 
a compensating field of opposite charge. 

The second term comes from the perturbation theory 

6 A. Blandin, paper contributed to the session on Solid Solu
tions at the A.I.M.E. Meeting, Cleveland, October 1963 
(unpublished). 

and is expressed, as usual, as a product of the matrix 
element of a bare potential by the corresponding matrix 
element of the dressed potential. 

(c) The total energy of the metal can also be written 
as a sum of pair interactions. This two-body force has 
a short-range and an asymptotic oscillating behavior. 

On the other hand, throughout this paper we empha
sized that part of the total energy which depends upon 
the structure of the crystal and more or less neglected 
the self-energy term which is a function of its volume. 
The above formulas then are only useful for the study 
of some properties of metals such as crystal structure, 
elastic constants at constant volume. They can also be 
generalized to binary alloys, giving then the effective 
chemical interaction between the different kinds of 
ions, and therefore their ordered structure. These, and 
some other applications, have been reviewed by 
Harrison.7 

If it turns out that the second-order perturbation 
method proposed by Harrison1 leads, for many metals, 
to numerical results in good agreement with experi
ment, then the above formulas will allow one to in
vestigate the influence of the new terms arising from 
the OPW method on this agreement. 
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APPENDIX 

Let us define the following charge density: 

(h\c) eik'T 

PiW=-Zfc<^Ec c*(i)—-

(Al) 
. ^ (k|P|k+q) 

D 

where c(r) is the wave function of the state \c). 
pi(r) is real [pi(q) = pi*(— q)] and has the mean value 

1 
P i ,o^[p i (q) l=o= £*<* ,<k |P |k> , (A2) 

Nv 

where v is the atomic volume. 
The charge density pi(r)— pi,0 is of the same nature 

as PE) indeed, the mean value of that charge is zero 
and, from (Al) ,pi(r) is a sum of negative charges 
localized around the nuclear sites, the charge near 
every nucleus being the same and equal to vpit0. We 

» W. A. Harrison, Phys. Rev. 129, 2512 (1963). 
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can then write pi(r)—pi)o=apE so that 

-Z*< f c ,{<k|P7^|k>-<k|P|k><k|F2 J |k>} * 

= -E*<^Efl^<k|P|k+q><k+q|F2jJ|k) 

- / 
ViE(r)pE(r)dr. (A3) 

PE(T) with [Fjs?(r) —F2js?(r)j is just a self-energy term 
which could be added to (3.11), but is so small that it 
can be neglected. We can thus identify (A3) with 

• / • 

a I ps(r)Vji(r)dr. (A4) 

Finally from (A2) and from the definition of po given 
r\ ^ .i~ i_ J rr / \ • .1 t ^ m Sec. I l l C we find that 
On the other hand, VIE\X) is exactly of the same 

nature as VE [see Eq. (3.4a)] and the interaction of a=X)A;</ei,(k|P|k)/XlA;<^(k|k) = [(k|P|k)]av. (AS) 
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Spin-Wave Interaction in the Itinerant-Electron Model of Ferromagnetism* 

KYOZI KAWASAKI| 
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Using a simple itinerant-electron model of ferromagnetism with exchange interaction and Coulomb re
pulsion between band electrons, spin waves, and their interactions are discussed. In the random-phase ap
proximation, we obtained the diagonal elements of spin-wave interactions which reduce to Dyson's result in 
the limit of localized electrons for our model. A diagrammatical interpretation of the result is also given. 
When the band with down spin is partially filled and that with up spin empty, the spin-wave interaction con
sists of the part arising from the modified exchange interaction, the part due to the electron kinetic energy 
and the Coulomb repulsion, and the part which involves both of these effects. Among these, the second seems 
to be rather small. For small values of the wave vectors of the spin waves involved, the spin-wave interaction 
depends on the wave vectors in the same way as in Dyson's result. The modification on the exchange inter
action is such that the short-range part of the original exchange interaction is suppressed, whereas the long-
range part remains unaffected. This arises from electron (hole) exchanges, and cancels in the limit of localized 
electrons. 

I. INTRODUCTION 

SINCE Dyson's theory1 on the spin-wave interactions 
of the Heisenberg spin system appeared, this prob

lem has been a subject of many investigations.2 How
ever, the experimental test of these theories did not 
appear until recently. Experiments have been performed 
on ferromagnetic metals such as3 Ni and4 permalloy to 
determine the temperature dependence of spin-wave fre
quencies which arise from spin-wave interactions. In the 
low-temperature region, they obtained the spin-wave 
frequency which decreases with the temperature as T5/2, 
in agreement with Dyson's result. However, its magni-

* A part of this work was supported by A.R.P.A. and the U. S. 
Office of Naval Research. 

f Present address: Department of Chemistry, Massachusetts 
Institute of Technology, Cambridge 39, Massachusetts. 
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tude, which is proportional to the square of the range of 
exchange interactions, is too large and requires the range 
of exchange interactions of about eight times the lattice 
constant to fit the above mentioned theoretical result. 
There are other evidences5 which indicate the existence 
of long-range exchange interactions. However, it was 
pointed out that such a long-range exchange interaction 
is inconsistent with other experimental evidence.4 It has 
been suggested that the itinerant character of electrons 
in these metals may be important.6 

On the other hand this problem is also of theoretical 
interest as another example in which interactions among 
elementary excitations play a major role.1*2,7 Although 
the property of elementary excitations in many-body 
systems has been a subject of numerous investigations, 
not much work has been done on the problem of inter
actions among them, which are essential in understand
ing the temperature dependence of energies of ele-

5 R. E. Argyle, S. H. Charap, and E. W. Pugh (to be published). 
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